อีเมล์: nyodsin@gmail.com, yodsin_n@su.ac.th
ห้องพัก: 4210/6 Science Building 4
โทร: 034-109686 ext. 207316
เว็บไซต์: -
การศึกษา:
ปร.ด. (เคมี) มหาวิทยาลัยอุบลราชธานี (2020)
วท.บ. (เคมี) มหาวิทยาลัยอุบลราชธานี (2016)
งานวิจัยที่สนใจ:
Application of density functional theory (DFT) to design and predict the properties of carbon-based nanomaterial and metal organic frameworks for energy and environment application.
ผลงานตีพิมพ์:
-
Zhang, Z., Guan, J., Ansari, R., Kieffer, J., Yodsin, N., Jungsuttiwong, S., Laine, R. M. (2022). “Further Proof of Unconventional Conjugation via Disiloxane Bonds: Double Decker Sesquioxane [vinylMeSi (O0. 5) 2 (PhSiO1. 5) 8 (O0. 5) 2SiMevinyl] Derived Alternating Terpolymers Give Excited-State Conjugation Averaging That of the Corresponding Copolymers.” Macromolecules, 55(18): 8106-8116. (IF: 5.985, 2022)
-
Yodsin,, Sriphumrat, K., Mano, P., Kongpatpanich, K., Namuangruk, S. (2022). “Metal-organic framework MIL-100 (Fe) as a promising sensor for COVID-19 biomarkers detection.” Microporous and Mesoporous Materials, 343: 112187. (IF: 5.876, 2022)
-
Sikam, P., Jitwatanasirikul, T., Roongcharoen, T., Yodsin, N., Meeprasert, J., Takahashi, K., Namuangruk, S. (2022). “Understanding the interaction between transition metal doping and ligand atoms of ZnS and ZnO monolayers to promote the CO 2 reduction reaction.” Physical Chemistry Chemical Physics, 24(21): 12909-12921. (IF: 3.945, 2022)
-
Injongkol, Y., Khemthong, P., Yodsin, N., Wongnongwa, Y., Sosa, N., Youngjan, S., Butburee, T., Rungtaweevoranit, B., Kiatphuengporn, S., Wittayakun, J., Roessner, F., Jungsuttiwong, S. (2022). “Combined in situ XAS and DFT studies on the role of Pt in zeolite-supported metal catalysts for selective n-hexane isomerization.” Fuel, 314: 123099. (IF: 8.035, 2022)
-
Intayot, R., Yodsin, N., Namuangruk, S., Rungnim, C., Jungsuttiwong, S. (2021). “Ti4-Decorated B/N-Doped Graphene as High-Capacity Hydrogen Storage Material: A DFT Study.” Dalton Transactions, 50: 11398-11411. (IF: 4.569, 2022)
-
Injongkol, Y., Intayot, R., Yodsin, , Montoya, A., Jungsuttiwong, S. (2021). “Mechanistic insight into catalytic carbon dioxide hydrogenation to formic acid over Pt-doped boron nitride nanosheets.” Molecular Catalysis, 510: 111675. (IF: 5.062, 2022)
-
Yodsin, N., Jungsuttiwong, S. (2021). “Formic Acid Dehydrogenation over Single Atom Pd-Deposited Carbon Nanocones for Hydrogen Production: Mechanistic DFT Study.” Molecular Systems Design & Engineering, 6: 609-626. (IF: 4.935, 2022)
-
Kitchawengkul, N., Prakobkij, A., Anutrasakda, W., Yodsin, N., Jungsuttiwong, S., Chunta, S., Amatatongchai M., Jarujamrus, P. (2021). “Mimicking Peroxidase-Like Activity of Nitrogen-Doped Carbon Dots (N-CDs) Coupled with a Laminated Three-Dimensional Microfluidic Paper-Based Analytical Device (Laminated 3D-μPAD) for Smart Sensing of Total Cholesterol from Whole Blood.” Analytical Chemistry, 93: 6989-6999. (IF: 6.986, 2022)
-
Yodsin, N., Sakagami, H., Udagawa, T., Ishimoto, T., Jungsuttiwong, S., Masanori, T. (2021). “Metal-doped carbon nanocones as highly efficient catalysts for hydrogen storage: Nuclear quantum effect on hydrogen spillover mechanism.” Molecular Catalysis, 504: 111486. (IF: 5.062, 2022)
-
Guan, J., Sun, Z., Ansari, R., Endo, A., Unno, M., Liu, Y., Ouali, A., Mahbub, S., Furgal, J. C., Yodsin, N., Jungsuttiwong, S., Hashemi, D., Kieffer, J., Laine, R. M. (2021). “Conjugated copolymers that shouldn’t be.” Angewandte Chemie International Edition, (IF: 16.823, 2022)
-
Sukdee, S., Meepowpan, P., Nantasaen, N., Jungsuttiwong, S., Yodsin, N., Pompimon, W. (2021). “New Chemical Constituents from the Leaves and Twigs of Holoptelea integrifolia.” Journal of Natural Remedies, 20: 240.
-
Murayama, H., Heike, Y., Higashida, K., Shimizu, Y., Yodsin, N., Wongnongwa, Y., Jungsuttiwong, S., Mori S., Sawamura, M. (2020). “Iridium‐Catalyzed Enantioselective Transfer Hydrogenation of Ketones Controlled by Alcohol Hydrogen‐Bonding and sp3‐C−H Noncovalent Interactions.” Advanced Synthesis & Catalysis, 362: 4445-4445. (IF: 5.837, 2022)
-
Guan, J., Arias, J. J. R., Tomobe, K., Ansari, R., Marques, M. d. F. V., Rebane, A., Mahbub, S., Furgal, J. C., Yodsin, N., Jungsuttiwong, S., Hashemi, D., Kieffer J., Laine, R. M. (2020). “Unconventional Conjugation via vinylMeSi(O−)2 Siloxane Bridges May Imbue Semiconducting Properties in [vinyl(Me)SiO(PhSiO1.5)8OSi(Me)vinyl-Ar] Double-Decker Copolymers.” ACS Applied Polymer Materials, 2: 3894-3907. (IF: 4.855, 2022)
-
Yodsin, N., Rungnim, C., Tungkamani, S., Promarak, V., Namuangruk, S., Jungsuttiwong, S. (2020). “DFT Study of Catalytic CO2 Hydrogenation over Pt-Decorated Carbon Nanocones: H2 Dissociation Combined with the Spillover Mechanism.” The Journal of Physical Chemistry C, 124: 1941-1949 (IF: 4.126, 2022)
-
Guan, J., Tomobe, K., Madu, I., Goodson, T., Makhal, K., Trinh, M. T., Rand, S. C., Yodsin, N., Jungsuttiwong, S. Laine, R. M. (2019). “Photophysical Properties of Functionalized Double Decker Phenylsilsesquioxane Macromonomers: [PhSiO1.5]8[OSiMe2]2 and [PhSiO1.5]8[O0.5SiMe3]4. Cage-Centered Lowest Unoccupied Molecular Orbitals Form Even When Two Cage Edge Bridges Are Removed, Verified by Modeling and Ultrafast Magnetic Light Scattering Experiments.” Macromolecules, 52: 7413-7422. (IF: 5.985, 2022)
-
Prigyai, N., Chanmungkalakul, S., Ervithayasuporn, V., Yodsin, N., Jungsuttiwong, S., Takeda, N., Unno, M., Boonmak, J. Kiatkamjornwong, S. (2019). “Lithium-Templated Formation of Polyhedral Oligomeric Silsesquioxanes (POSS).” Inorganic Chemistry, 58: 15110-15117. (IF: 5.165, 2022)
-
Guan, J., Tomobe, K., Madu, I., Goodson, T., Makhal, K., Trinh, M. T., Rand, S. C., Yodsin, N., Jungsuttiwong, S., Laine, R. M. (2019). “Photophysical Properties of Partially Functionalized Phenylsilsesquioxane: [RSiO1.5]7[Me/nPrSiO1.5] and [RSiO1.5]7[O0.5SiMe3]3 (R = 4-Me/4-CN-Stilbene). Cage-Centered Magnetic Fields Form under Intense Laser Light.” Macromolecules, 52: 4008-4019. (IF: 5.985, 2022)
-
Yodsin, N., Rungnim, C., Promarak, V., Namuangruk, S., Kungwan, N., Rattanawan, R., Jungsuttiwong, S. (2018). “Influence of hydrogen spillover on Pt-decorated carbon nanocones for enhancing hydrogen storage capacity: A DFT mechanistic study.” Physical Chemistry Chemical Physics, 20: 21194-21203. (IF: 3.945, 2022)